
Union and Intersection Contracts Are Hard, Actually
Teodoro Freund

Universidad de Buenos Aires
Buenos Aires, Argentina

tfreund@dc.uba.ar

Yann Hamdaoui
Tweag

Paris, France
yann.hamdaoui@tweag.io

Arnaud Spiwack
Tweag

Paris, France
arnaud.spiwack@tweag.io

Abstract
Union and intersection types are a staple of gradually typed
languages such as TypeScript. While it’s long been recog-
nized that union and intersection types are difficult to ver-
ify statically, it may appear at first that the dynamic part of
gradual typing is actually pretty simple.

It turns out however, that in presence of higher-order con-
tracts union and intersection are deceptively difficult. The
literature on higher-order contracts with union and inter-
section, while keenly aware of the fact, doesn’t really ex-
plain why. We point and illustrate the problems and trade-
offs inherent to union and intersection contracts, via exam-
ple and a survey of the literature.

CCS Concepts: • General and reference → Surveys and
overviews; • Software and its engineering → Language
features; Software verification and validation.

Keywords: contracts, higher-order contracts, union, inter-
section

ACM Reference Format:
Teodoro Freund, YannHamdaoui, andArnaud Spiwack. 2021. Union
and Intersection Contracts Are Hard, Actually. In Proceedings of
the 17th ACM SIGPLAN International Symposium on Dynamic Lan-
guages (DLS ’21), October 19, 2021, Chicago, IL, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3486602.3486767

1 Introduction
Union types, meaning a type A ∪ B containing values which
belong either to a type A or B, are a popular tool when adding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DLS ’21, October 19, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9105-4/21/10…$15.00
https://doi.org/10.1145/3486602.3486767

static types to a dynamic language. In particular, both Type-
Script [9] and MyPy [1], use union types to model the fre-
quent practice to use the value null (None in Python) to rep-
resent an absent optional value. This is why the gradual typ-
ing literature, concerned with formalising the interplay be-
tween static and dynamic type systems, has been quite in-
terested in union types [11, 17, 20, 23, 25].

On the other hand, unions are not a common feature of
static type systems, mostly because they are quite difficult
to verify statically. So unions are really only worth it in grad-
ually typed language where they formalise existing dynam-
ically typed patterns.

Surely, for dynamic tests, unions ought to be really easy:
they are simply the Boolean disjunction of two dynamic
tests, that fail whenever one of those tests fail. Unfortunately,
as we document in this article, as soon as you extend dy-
namic checks to contracts [14], unions become actually pretty
difficult, and threaten desirable properties of your language.

1.1 Configuration Languages
To motivate contracts and the problem caused by unions,
let’s make a detour through configuration languages. A con-
figuration language is a language concernedwith describing
the configuration of an application. In traditional configura-
tion languages, such as YAML, TOML, or JSON, the config-
uration is fully, and explicitly, spelt out.

However, with the advent of DevOps, configurations have
been extended to describe the entire state of a computer,
or even a fleet of computers. For instance, with Kubernetes
you need to configure a large fleet of (possibly replicated)
docker containers. To describe this sort of configurations,
you really want to be able to re-use and abstract parts of
the configuration, like traditional programming languages
do. To meet this need, languages such as Cue [2], Dhall [6],
Jsonnet [7], or Nickel [3], where configurations are gener-
ated rather than spelt out, were created.

Another example is continuous integration systems: it’s
fairly typical to need amatrix of jobs, wherein the same tests
are run on different infrastructures, or with different ver-
sions of a compiler. Traditional configuration would have
you copy the same steps for each infrastructure. This is te-
dious, hard to maintain, and error prone. It’s much better,
instead, to write the steps once, and instantiate them for
each infrastructure. Continuous integration systems typi-
cally do this using a templating system layered on top of

https://doi.org/10.1145/3486602.3486767
https://doi.org/10.1145/3486602.3486767

DLS ’21, October 19, 2021, Chicago, IL, USA Teodoro Freund, Yann Hamdaoui, and Arnaud Spiwack

YAML. Each of the configuration-generating languages above
allow such job-matrix definition natively.

1.2 Nickel
In this article, we will use the Nickel language [3] as illus-
tration and motivation. At its core, Nickel is the JSON data
model, augmentedwith abstractionmechanisms, and it com-
prises:

• dictionaries, written as 1:
{field1 = value1 , …, fieldn = valuen}

• arrays:
[x1, x2, …, xn]

• functions:
fun arg1 … argn ⇒ body

• and let-definitions:
let id = value in exp

A Nickel configuration is then evaluated to an explicit
configuration, e.g. in JSON, which can then be consumed
by an application. Therefore a design constraint of Nickel is
any Nickel data must have a straightforward interpretation
in JSON.

1.3 Contracts
A useful feature of a configuration language is to provide fa-
cilities for schema validation.That is, help answer questions
like: does our configuration have all the required fields? does
the url field indeed contains a URL?

These are inherently dynamic questions, as they are all
questions about the evaluated configuration. To this effect,
Nickel lets us annotate any expressionwith a dynamic schema
check: exp | C. There is also syntactic sugar to annotate def-
initions: let id | C = value in exp stands for let id = (

value | C) in exp.
Let us pause for a moment and consider the following:

it is Nickel’s ambition to be able to manipulate configura-
tions like Nixpkgs. With over 50 000 packages, it is one of
the largest repository of software packages in existence [8].
Concretely, Nixpkgs is a dictionary mapping packages to
build recipes. That is, a massive, over-50 000-key-value-pair
wide dictionary. It is absolutely out of the question to eval-
uate the entirety of this dictionary every time one needs to
install 10 new packages: this would result in a painfully slow
experience.

To be able to support such large dictionaries, Nickel’s dic-
tionaries are lazy, that is, the values are only evaluatedwhen
explicitly required. For instance, when evaluating the ex-
pression nixpkgs.hello, only the hello package gets eval-
uated, even if nixpkgs contained a world package as well.
1Note that, unlike JSON, Nickel assigns values in dictionaries using =, to
keep : for type annotations.

But let’s consider nowwriting something like nixpkgs |

packages, to guarantee that all the packages conform to the
desired schema. If this were a simple Boolean test, it would
have to evaluate all 50 000 package to check their validity,
hence breaking the laziness of dictionaries. Do we have to
choose between laziness and schema validation? Fortunately,
we don’t! Enter contracts [14]: dynamic checks which can be
partially delayed, yet errors can be reported accurately. Con-
tracts can respect laziness of dictionaries, and they can be
used to add schema validation to functions as well (in fact
functions were the original motivation for contracts).

There is no Boolean functionwhich can check that a value
has type Str → Str. Instead, a contract for Str → Str

checks for each call of the function whether

1. the argument has type Str, otherwise the caller of the
function is faulty

2. if so, that the returned value has type Str, otherwise
the implementation of the function is faulty

Like in the case of lazy dictionaries, the checks are de-
layed. Contracts keep track of whether the caller or the im-
plementation is at fault for a violation, hence it can report
precise error messages. Contracts are said to blame either
the caller or the implementation. Compare Figure 1a and Fig-
ure 1b: in Figure 1a an error is reported inside the catHosts

function, but catHosts is, in fact, correct, as is made clear by
Figure 1b, where catHosts is decorated with the Str → Str

contract, and correctly reports that the caller failed to call
catHosts with a string argument.

As we shall show, the delayed check of contract, while es-
sential to ensuring that schema validation doesn’t affect per-
formance (or, indeed, is possible at all on functions), make
union contracts (and their less appreciated sibling, intersec-
tion contracts) quite problematic. While usual contracts re-
quire only one witness to show the invalidation of a con-
tract, the introduction of unions makes the number of wit-
nesses not bounded.

1.4 Contributions
Our contributions are as follows

• Wedescribe the fundamental difficulties caused by pre-
sence of union and intersection contracts in a language,
which are kept implicit in the literature (Section 4)

• We survey the various trade-offs which appear in im-
plemented languages and in the academic literature
to work around these difficulties (Section 5)

2 A Typology of Language Features
Union contracts are not only difficult to implement, their
unrestricted presence is incompatible with potentially desir-
able properties of the language. In this section we present
some of these properties; wewill show how these properties
interact with union contracts in Sections 4 and 5.

Union and Intersection Contracts Are Hard, Actually DLS ’21, October 19, 2021, Chicago, IL, USA

let catHosts = fun last ⇒
let hosts = ["foo.com", "bar.org"] in

lists.fold (fun val acc ⇒
val ++ "," ++ acc) hosts last in

let makeHost = fun server ext ⇒
server ++ "." ++ ext in

catHosts (makeHost "google")

error: Type error

3 | […] "," ++ acc) hosts last in

| ^^^

| This expression has type Fun ,

| but Str was expected

4 |

5 | let makeHost = fun server ext ⇒ […] in

| --------------------

| evaluated to this

= ++, 2nd argument

(a) Error reporting without contract

let catHosts | Str → Str = fun last =>

let hosts = ["foo.com", "bar.org"] in

lists.fold (fun val acc =>

val ++ "," ++ acc) hosts last in

let makeHost = fun server ext =>

server ++ "." ++ ext in

catHosts (makeHost "google ")

error: Blame error: contract broken by the caller.

| Str → Str

| --- expected type of the argument […]

[…]

1 | let catHosts | Str → Str = fun last ⇒
| ^^^^^^^^^^ bound here

[…]

6 | catHosts (makeHost "google")

| --------------------------- (2) calling <func >

(b) Error reporting with contract

Figure 1. Contracts improve error messages

2.1 User-Defined Contracts
A strength of dynamic checking is that we can easily check
properties which are impractical to check statically. For in-
stance that a string represents a well-formed URL, or a num-
ber is a valid port.

This same property is desirable of contracts as well, oth-
erwise we lose an important benefit of dynamic checking.
Preferably, we want to be able to extend the universe of con-
tracts with user-defined predicates.

For instance, Figure 2 shows the definition of a contract
for valid ports in Nickel syntax. User-defined contracts can
be combined with other contracts normally: Int → Port is
a contract verified by functions which, given an integer re-
turns a valid port.

let Port = contracts.fromPred (fun p ⇒
num.isInt p && 0 ≤ p && p ≤ 65535) in

80 | Port

Figure 2. A contract for valid ports

This type of contracts are present in many different lan-
guages, for instance, the Eiffel programming language [19],
the precursor of the Design by Contract philosophy, makes
it possible to assert these kinds of expression as pre- and
post-conditions on functions and as invariants on classes [5].

The Racket programming language also has a system to
workwith contracts, powerful enough to define user-defined
contracts, and to compose themwith other kinds of dynamic

checks, like higher order contracts or a lightweight take on
union and intersection contracts [4].

2.2 Referential Transparency
The performance of modern programs heavily relies on the
optimizations performed by the compiler or the interpreter.
Even more so for functional languages, whose execution
model is often far removed from the hardware, causing naive
execution to exhibit unacceptable slowdowns.

One such important optimization is inlining (Figure 3).
Functional programs tend to make heavy use of functions,
and a function call is not a free operation: it usually involves
a number of low-level operations such as saving and storing
registers, pushing a new stack frame and jumping to and
back from the function’s body. Inlining eliminates a func-
tion call by directly substituting the function for its defini-
tion at compile time (or before execution, for interpreted
language).This is especially efficient for small functions that
are called repeatedly.

While inlining expands an expression by substituting a
definition for its value, an opposite transformation can be
beneficial when a composite expression occurs at several
places. In this case, the same expression is wastefully recom-
puted at each occurrence. Common subexpression elimina-
tion (CSE) consists in storing the expression in a variable
that is then used in place of the original occurrences (Fig-
ure 4), thus evaluating the expression once and for all.

Beyond CSE, other optimizations such as loop-invariant
code motion or let-floating [21] apply the same principle of

DLS ’21, October 19, 2021, Chicago, IL, USA Teodoro Freund, Yann Hamdaoui, and Arnaud Spiwack

let elem = fun elt ⇒
lists.any (fun x ⇒ x == elt) in

let subList = fun l1 l2 ⇒
elem (lists.head l1) l2

&& subList (list.tail l1) l2

Source program

let subList = fun l1 l2 ⇒
lists.any (fun x ⇒ x == (lists.head l1))

l2

&& subList (list.tail l1) l2

Optimized program

Figure 3. Inlining

let elemAtOrLast = fun index list ⇒
if index > lists.length list - 1 then

lists.elemAt (lists.length list - 1)

list

else

lists.elemAt index list

Source program

let elemAtOrLast = fun index list ⇒
let l = lists.length list - 1 in

if index > l then

lists.elemAt l list

else

lists.elemAt index list

Optimized program

Figure 4. Common subexpression elimination

let f = fun x ⇒ g y (x + 1)

Source program

let g' = g y in

let f' = fun x ⇒ g' (x + 1)

Optimized program

Figure 5. Let-floating

extracting out an invariant expression to avoid recomputing
it (respectively across loop iterations and function calls).

For example, take the code of Figure 5. The partial appli-
cation g y is recomputed each time f is called. This may
be costly, in particular in the presence of contracts: if the

first argument of g must be a list with elements of a spe-
cific kind and if that precondition is enforced by a function
contract (say g | List Odd → Even → List Odd), the addi-
tional cost is linear in the size of y. A sensible thing to do is
to factor g y out of f as in Figure 5, which is something a
let-floating transformation could indeed do (given g is pure,
as detailed below).

The soundness of these optimizations is tied to the valid-
ity of specific program equivalences. Inlining requires that
one can replace the application of a function by its body,
which is basically 𝛽-reduction: as long as the arguments are
evaluated following the language’s strategy, this is usually
a valid transformation. However, Section 4 exposes that the
question of inlining a function with a contract attached is
more subtle.

A CSE-like transformation on a term 𝑀 requires on the
other hand an equivalence of the form:

𝑀 [𝑁 /𝑥] ≃ 𝑙𝑒𝑡 𝑥 = 𝑁 𝑖𝑛 𝑀 (1)
𝑀 [𝑁 /𝑥] stands for the substitution of 𝑥 for the term 𝑁 in

the term 𝑀 . This equation clearly fails in presence of side-
effects, as demonstrated in Figure 6. In that example, (f 1,

f 1) prints "hi" two timeswhile let y = f 1 in (y,y) only
prints it once.

let f x = print "hi";(x+1)

Effectful function

(f 1,f 1) ; let y = f 1 in (y,y)

Invalid expansion

Figure 6. Counter-example to (1) in presence of side-effects

However, (1) does hold for pure terms, that are termswith-
out side-effects. In a pure language, all these transforma-
tions are valid. In impure languages, the situation varies:
in some case a large subset of pure terms can be identified
(in languages with effects tracking such as PureScript) to be
safely transformed. Otherwise, the compiler must stay con-
servative and only apply CSE to expressions it can prove
are without side-effects (arithmetic expressions, for exam-
ple). Strikingly, we will see in Section 4 that the introduc-
tion of union and intersection contracts breaks referential
transparency and make (1) unsound2, preventing the kind of
optimization of Figure 5 to fire in general.

3 Union & Intersection
Let us now consider union and intersection contracts, be-
fore we explain in Section 4 how they can compromise the
properties that we described in Section 2.
2(1) holds in Nickel despite non-termination and contract-checking errors
because of lazy evaluation. In strict languages (1) needs to be restricted,
nevertheless union and intersection contracts make it worse.

Union and Intersection Contracts Are Hard, Actually DLS ’21, October 19, 2021, Chicago, IL, USA

interface Circle {

kind: "circle";

radius: number; }

interface Square {

kind: "square";

sideLength: number; }

type Shape = Circle | Square;

Figure 7. A sum type as a tagged union

3.1 Unions
A union type A ∪ B is a type of values which are either of
type A or of type B: literally the union of A and B. Union types
are popular in gradual typed systems such as TypeScript [9]
and MyPy [1].

In Gradually Typed Systems. The problem that these
practical gradual type systems are trying to solve is to cap-
ture, in static types, as many programming patterns as possi-
ble from the underlying dynamically typed language (Java-
Script for TypeScript and Python for MyPy). One such pat-
tern is heterogeneous collections. For instance, in TypeScript,
an array which can contain both strings and numbers would
have type Array<string|number>.

A probably evenmore common pattern is a variablewhich
can contain either a value of type A (say, a number) or the
null value. So much so, in fact, that MyPy defines a type
alias Optional[A] for Union[A,None] (None is how Python
renders the null value).

Yet another application of union types is, rather than cap-
turing a pattern from JavaScript or Python, to capture a pat-
tern from traditional statically typed language: sum types.
In statically typed languages, values of sum types are usu-
ally thought of as being built out of constructors. But nei-
ther JavaScript nor Python have such constructors. So in-
stead, sums are construed as “tagged unions” (or discrimi-
nated unions), that is, quite literally, the union of two types
which contain a discriminating tag. See Figure 7 for an ex-
ample from the TypeScript documentation: there the kind

field is the tag, and its type in both alternatives is a single-
ton type which contains only the specified string.

Union contracts. In the academic gradual type literature,
it is common to use contracts as a glue between static and
dynamic types. Therefore, the question of bringing union to
contracts is natural, and have indeed been studied (e.g. [17,
25]).

Like for static types, a value which satisfies the contract
A ∪ B is a value which satisfies either contract A or contract
B (though in Section 5 we will see that it may be desirable
to weaken this definition).

Nickel is a language built from scratch with contracts,
so it may be less clear why unions are useful. However,
Nickel’s ambition is to have its data model canonically in-
terpretable in common serialization formats, in particular
JSON. It means that it is very convenient to represent op-
tional value by the null value like in JavaScript. It alsomeans
that Nickel doesn’t have built-in constructors: constructors
don’t have a canonical representation in JSON. So it would
be quite natural to represent optional contracts and sum
contracts as unions.

3.2 Intersections
An intersection type A ∩ B is satisfied by values which sat-
isfy both contract A and contract B.

Intersection contracts (and types) are probably less preva-
lent than union in practical type systems. However, a func-
tion from a union is equivalent to an intersection.That is (A
∪ B) → C≃ (A → C) ∩ (B → C). So in a systemwith func-
tions and unions, intersections are already morally present
(and, for that matter, in a system with functions and inter-
sections, unions are morally present). Some of our examples
in Sections 4 and 5 are better expressed in terms of intersec-
tions, so it’s best to include them.

Figure 8 gives a concrete example of this phenomenon.
The function appendDate appends an element to list, whose
type is only known to be the union of two lists, each using a
different representation. Because the return type is the same
as the input type, appendDatemust preserve this representa-
tion (Date and DateWeek cannot bemixed in a same list). Both
alternatives support falling back to a simple string for un-
parsed dates. Faced with these two possibilities, appendDate
can only append a value which fits both types: this is pre-
cisely the intersection (Date ∪ Str) ∩ (DateWeek ∪ Str),
that is, Str.

let Date = {day | Num , month | Num , year |

Num} in

let DateWeek = {dayOfWeek | Num , week | Num ,

year | Num} in

let appendDate | (List (Date ∪ Str)

∪ List (DateWeek ∪ Str))

→ (List (Date ∪ Str)

∪ List (DateWeek ∪ Str)) =

fun list ⇒ lists.cons "01/01/2021" list

Figure 8. Adding an element to a union of two arrays

Yet, intersection are useful in their own right: they can be
used to combine dictionaries in the style of object-oriented
multiple inheritance. For instance, in Figure 9 two types are
defined Animal and Pet, and a variable that is compatible
with both types is declared, with type Animal ∩ Pet. This
particular application is supported, for instance, by Type-
Script.

DLS ’21, October 19, 2021, Chicago, IL, USA Teodoro Freund, Yann Hamdaoui, and Arnaud Spiwack

let Animal =

{ species | Str , breed | Str , name | Str }

in

let Pet = { owner | Str , name | Str } in

let myDog | Animal ∩ Pet =

{ species = "Canis Lupus",

breed = "Australian Cattle Dog",

owner = "Anonymous Author",

name = "Juno" }

Figure 9. An animal that is also a pet

Another application of intersections shows up when in-
tersecting functions: it can be used to encode overloading.
For instance, take a look at Figure 10, where the function
duplicate works both as a function to duplicate arrays, as
well as a function to duplicate strings. This is particularly
useful when using unions, since it’s a good way to express
that a function can deal with different shapes of data. For
instance, in the same figure, duplicate is (correctly) called
on a value of type (List Str) ∪ Str.

let duplicate

| (List Str → List Str)

∩ (Str → Str) =

fun x ⇒ x ++ x in

let text | (List Str) ∪ Str = … in

duplicate text

Figure 10. Duplicating an array of Strings or a String

4 Incompatibilities
However appealing union and intersection contracts may
be, they happen to be either hard to combine or even funda-
mentally incompatible with the desirable language features
from Section 2. At least in their full-blown form: in Section 5
we will discuss pragmatic restrictions of union and intersec-
tion contracts to recover some or all of the features.

4.1 Union Contracts as a Side-Effect
In Nickel, the failure of a function contract can always be
traced back to a single call. For example, take the function f

with a simple contract attached of Figure 11. The whole pro-
gram fails with a contract error blaming f because the return
value of the second call f 5 violates the Positive contract.
The first call to f does not matter, and f 5 is a single and
independent witness of the contract violation. The user is
pointed to this one location in practice.

This single witness property can be justified as follows.
Apart from the error reporting part (although this is the cru-
cial bit in practice!), the current contract system of Nickel

can be implemented purely as a library, requiring only a
fail primitive to abort the execution. In practice, applying
a function contract to f replaces it with an f' that performs
the additional checks. Thus, since the core language is pure
(albeit partial, if only because fail), the failure of f' 5must
be independent of its environment and of any previous call
to f'.

let f | Positive → Positive

= fun x ⇒ x - 7 in

(f 10) + (f 5)

Figure 11. Simple contract violation

Union contracts are different. Consider the program pre-
sented in Figure 12. The same f is now given a union con-
tract. f is violating this contract once again, as it neither
maps all positive numbers to positive numbers nor to non-
positive numbers.

let f | (Positive → Positive)

∪ (Positive → NonPositive)

= fun x ⇒ x - 7 in

(f 10) + (f 5)

Figure 12. Union contract violation

This program must fail, because f 10 is a witness of f fail-
ing the contract Positive → NonPositive, and f 5 is a wit-
ness of f failing Positive → Positive. But, as opposed to
the example from Figure 11, removing only one of the calls
makes the program succeed! Indeed, each call only unveils
the violation of one component of the union. In this exam-
ple, a single call to f that would be the witness of the viola-
tion of the whole contract doesn’t even exist: a minimum of
two are always needed.

This behavior shows that union contracts introduce side-
effects. The result of f 5 now depends on the previous exe-
cution and more specifically on any prior call to f. This be-
havior of union contracts breaks referential transparency,
as well as the property 1 introduced in Section 2.2, that is
required to perform CSE-like optimizations.

Figure 13 illustrates this point further. It contains an orig-
inal program and an optimized version where the common
subexpression f 1 has been eliminated. While equivalent in
a pure language with only non-termination or plain higher-
order contracts, these two programs behave differently be-
cause of unions:

• Theoriginal version returns (1, "False")without fail-
ing.

• The optimized version fails with a contract violation.

Union and Intersection Contracts Are Hard, Actually DLS ’21, October 19, 2021, Chicago, IL, USA

In the original version, each partial application f 1 gives
rise to a fresh instance of the contract Bool → Num ∪ Bool

→ Str. These instances are independent, and can pick a dif-
ferent component of the union to satisfy. Although f doesn’t
actually respect the contract, these calls are not enough to
prove so. In the optimized version, g is endowed with a sin-
gle contract, that must pick one of the two components of
the union. There, the two calls refer to the same union con-
tract, and shows that f does violate its initial contract.

let f | Num → (Bool → Num ∪ Bool → Str)

= fun x y ⇒ if y then x else "False"

in (f 1 true , f 1 false)

Original

let f | Num → (Bool → Num ∪ Bool → Str)

= fun x y ⇒ if y then x else "False"

let g = f 1 in

(g true , g false)

Optimized

Figure 13. Equivalent programs with CSE applied

To sum up, the addition of union contracts introduce side-
effects in a pure language. Side-effects have well-known pit-
falls:

• For the programmer, they are hard to reason about.
They prevent local reasoning. In our previous exam-
ples, removing or adding a function call somewhere
can toggle a failure in a call at a totally different loca-
tion.

• For the interpreter (or compiler), side-effects inhibit
many optimizations and program transformations.

4.2 Intersection with User-Defined Contracts
A natural — but naive — implementation of intersection con-
tracts could be the following: to apply a contract A ∩ B, ap-
ply both contracts A and B sequentially, resulting in the naive
decomposition rule of Figure 14.

This intuition works for simple contracts: checking that x
| Natural ∩ Odd amounts to check that x | Natural and

x | Odd. Unfortunately, this doesn’t scale to higher-order
contracts. The overloaded identity example of Figure 14 il-
lustrates the use of an intersection to model a simple over-
loading of the identity function. If we were to apply the
naive decomposition, the argument 1would fail the Str →
Str contract and abort the execution. Perhaps the exchange
rule given in Figure 14, which is a direct consequence of the
naive decomposition, illustrates the issue better. It is clear
that this exchange law isn’t the right semantics for over-
loading. With this law, the contract for overloaded identity
of Figure 14 would always fail because no argument can sat-
isfy Num ∩ Str.

M | A ∩ B ≃ (M | A) | B

Naive decomposition

(A → B) ∩ (C → D) ≃ (A ∩ C) → (B ∩ D)

Exchange law

let g | Num → Num ∩ Str → Str

= fun x ⇒ x in

g 1

Overloaded identity

Figure 14. Naive implementation of intersection

In a higher-order intersection contract, blame is raised
when:

Faulty caller The argument fails both components.
Faulty implementation The function fails at least one

component that the argument previously satisfied.
To fix the naive implementation, the interpreter can share

state between the sub-contracts, in order to decide if blame
must be raised or not when a sub-contract fails:
x | A ∩ B ≃ (x | A[l]) | B[l]

Shared state is represented by the label l. Such a shared
state is in essence the approach proposed by Williams, Mor-
ris, and Wadler in [25].

let C = contracts.fromPred (fun f ⇒
f 0 == 0) in

let g | (Str → Str) ∩ C

= fun x ⇒ x

in g 0

Figure 15. Intersection and user defined contracts

However, this shared-state approach has a major draw-
back: it isn’t straightforwardly compatiblewith user-defined
contracts (introduced in Section 2.1). The issue is similar to
our initial issue with higher-order contracts and the naive
decomposition: user-defined contracts may apply functions
and thus make a sub-contract of the intersection fail, but
this failure shouldn’t always result in raising blame. An ex-
ample is given on Figure 15. Decomposing using the shared
state approach, we end up with:
((fun x ⇒ x) | (Str → Str)[l]) | C[l]

Stateful decomposition

where l represents the shared state. At this point, applying
the C contract results in evaluating:
((fun x ⇒ x) | (Str → Str)[l]) 0 == 0.

DLS ’21, October 19, 2021, Chicago, IL, USA Teodoro Freund, Yann Hamdaoui, and Arnaud Spiwack

Applying a function wrapped in a Str → Str contract to
0 fails negatively.This is not the expected behavior, since the
identity function does respect semantically both contracts.
As opposed to built-in higher-order contracts, user-defined
contracts are black-box from the interpreter’s point of view,
and it is thus not obvious how to extend the shared state
approach to handle user-defined contracts.

Once again, intersection contracts introduce side-effects
in the picture. What’s more, these side-effects interact with
user-defined contracts in a non-trivial way, while they are
an important feature for validation.

5 Pragmatic Trade-Offs
Despite the difficulties of Section 4, union and intersection
contracts are still sought after. In this section we turn to
existing systems with union and intersection contracts in
the literature and in implementations.

These systems all make trade-offs, sacrificing some fea-
tures of union and intersection contracts to preserve lan-
guage features. We survey and discuss those trade-offs and
their implications.

5.1 A Coinductive Semantics
In order to give a precise definition to what values ought
to satisfy union and intersection contracts, Keil and Thie-
mann [17] give a coinductively defined semantics inspired
by union and intersection type systems. The key innova-
tion of their work is recognizing that giving a semantics
to higher-order contracts requires defining not only what
values satisfy a contract, but also what contexts satisfy the
contract. This models the situation where context may vio-
late a contract by calling a function with an inappropriate
argument.

Concretely, given a contract 𝐶 , Keil and Thiemann intro-
duce the two sets ⟦𝐶⟧+ and ⟦𝐶⟧− of values and contexts, re-
spectively, satisfying the contract. They are defined by mu-
tual induction and coinduction.

This semantics has limited support for overloading. Con-
sider the example in Figure 16: it could evaluate to the pair
(1, 1). But Keil and Thiemann’s coinductive semantics re-
jects it as a contract violation.This can be phrased pithily as
the fact that the coinductive semantics doesn’t validate the
property A → B ∩ A → C≃A → (B ∩ C).

let f = fun x y ⇒ x in

let g = f | (Num → Num → Num)

∩ (Num → Bool → Num) in

let h = g 1 in

(h 1, h true)

Figure 16. Intersection contracts don’t distribute

A solution, for the programmer, is to use an uncurried
function fun (x, y) ⇒ x. So one way to think about this
limitation is that currying function is not fully supported.

Note that if the last two lines of Figure 16 had read (

g 1 1, g 1 true) instead, then the coinductive semantics
would accept the example. It implies that under the coin-
ductive semantics, common-subexpression elimination (see
Section 2.2) is quite perilous.

5.2 A First Realization
In Section 4, we’ve seen that different calls to a function
with a union contract must share information: the behavior
of one call is influenced by the previous ones, as the function
must pick one component of the union to satisfy across all
usages. Conversely, following the semantics of overloading,
each application of a function with an intersection contract
can select a different branch and is thus independent from
the others. A general contract composed of nested unions,
intersections and higher-order contracts appears to require
complex book-keeping in order to correctly raise blame.

All of this still holds true of the coinductive semantics
described in Section 5.1. Nevertheless, Keil and Thiemann
give an algorithmic system which is complete for their coin-
ductive semantics. In a remarkable technical tour de force,
their algorithmic system allows for user-defined contracts
(see Section 4.2).

A key aspect of the approach of Keil and Thiemann is to
rewrite nested union and intersection contracts into a dis-
junctive normal form using the De Morgan’s law A ∩ (B ∪
C)≃(A ∩ B) ∪ (A ∩ C). The goal is to be able to delay the

choice of branch in intersections as much as possible.
To implement contract verification, Keil andThiemann re-

sort to specific reduction rules for unions and intersections
which perform this rewriting on the fly. This aspect is cri-
tiqued in Williams et al. [25]: “the monitoring semantics for
contracts of intersection and union types given by Keil and
Thiemann are not uniform. (…) If uniformity helps compo-
sition, then special cases can hinder composition.”

A cost of this approach is that the De Morgan’s law A ∩
(B ∪ C)≃(A ∩ B) ∪ (A ∩ C) duplicates contract A, which

will cause some contracts to be checked several times. This
can be an issue with user-defined contracts which may in-
clude costly tests.

Efficiency is also affected another way: each time a func-
tion with a contract attached is applied, the whole context
must be traversed to check for a compatibility property.

The algorithmic system of Keil and Thiemann is, on bal-
ance, a technically impressive realization of the coinductive
semantics that supports user-defined contracts, though it
is fairly complex and probably difficult to implement effi-
ciently.

Union and Intersection Contracts Are Hard, Actually DLS ’21, October 19, 2021, Chicago, IL, USA

5.3 Monitoring Properties
Another realization of the coinductive semantics described
in Section 5.1 is given in Williams et al. [25], which aims
at simplifying the algorithmic system proposed by Keil and
Thiemann and described in Section 5.2.

A key ingredient of Williams et al. is to disallow user-
defined contracts. This choice gives the authors more free-
dom in the quest of a more uniform operational semantics.
This is sensible trade-off in the context of gradual typing à
la TypeScript: the problem is to match contracts with static
types, and user-defined contracts don’t have a static type
equivalent. On the other hand, the cost would probably not
be worth it for a configuration language like Nickel.

As a means of proving the correctness of their simplified
system, the authors introduce what they call sound moni-
toring properties. Here is the sound monitoring property for
contexts of intersection contracts:

𝐾 ∈ ⟦𝐴 ∩ 𝐵⟧− 𝑖 𝑓 𝐾 ∈ ⟦𝐴⟧− ∨ 𝐾 ∈ ⟦𝐵⟧−

This reads as: a context 𝐾 satisfies the intersection of 𝐴
and 𝐵 if it satisfies at least one of the two. Morally, the 𝐾s in
⟦𝐴 ∩ 𝐵⟧− should be the ones that can have their hole filled
with a term satisfying 𝐴 ∩ 𝐵 without violating the 𝐴 ∩ 𝐵
contract.

Although sound, this interpretation is weaker than what
the coinductive semantics permits. Consider the two con-
texts presented on Figure 17. The first one is a context satis-
fying Num → Num, applying the hole to a number. Similarly,
the second context from the same figure satisfies Bool →
Bool.

□ 3

Num → Num context

□ true

Bool → Bool context

Figure 17. Two different contexts in Nickel

Now, combining these two contexts as in Figure 18 gives
a context that doesn’t satisfy Num → Num nor Bool → Bool.
According to the soundmonitoring property of intersection,
Figure 18 thus doesn’t satisfy Num → Num ∩ Bool → Bool.

let f = □ in

(f 3, f true)

Figure 18. Combined context

The consequence is that Williams et al. don’t prove their
system complete for the coinductive semantics. It’s probably
just an oversight in the proof: we believe their system to be

indeed complete for the coinductive semantics. But it does
speak to the intrinsic complexity of union and intersection
contracts: it is remarkably easy to get details wrong. This
difficulty contrasts with the standard framework of higher-
order contracts where satisfaction is much more straightfor-
ward.

5.4 Racket
Racket is a language based on the Scheme dialect of Lisp.
Among established languages, Racket is probably the one
with the most comprehensive contract system [4]. Regard-
ing union and intersection, Racket provides the and/c and
or/c combinators for contract.

The and/c combinator corresponds to the naive interpre-
tation of intersection described in Section 4.2: applying con-
tract (and/c A B) is like applying contract A then applying
contract B. In particular and/c doesn’t model overloading.
As in Figure 14, the example given in Figure 19 always fail
because no argument satisfies both number? and string?.

(define/contract overload

(and/c (→ number? number ?)

(→ string? string ?))

(lambda (x) x))

Figure 19. and/c and overloading

The union combinator or/c is similarly simple. It must
be able to decide immediately which branch holds: or/c is
a simple Boolean disjunction. For instance, when higher-
order contracts are combined using or/c, Racket imposes
that contracts must be distinguishable by their arity. Doing
so, there is at most one candidate that can be selected di-
rectly. This is illustrated in Figure 20 whose program is ac-
cepted. On the other hand, the program of Figure 21 is re-
jected.

(define/contract united

(or/c (→ number? number ?)

(→ string? string? string ?))

(lambda (x) x))

Figure 20.Accepted use of or/cwith higher-order contracts

(define/contract united

(or/c (→ number? number ?)

(→ even? even?))

(lambda (x) x))

Figure 21. Rejected use of or/cwith higher-order contracts

DLS ’21, October 19, 2021, Chicago, IL, USA Teodoro Freund, Yann Hamdaoui, and Arnaud Spiwack

case->. To compensate for the fact that and/c doesn’t sup-
port overloading, Racket provides a second intersection-like
combinator: case→. As for the or/c, the candidate contracts
must have distinct arities to avoid ambiguity, unlike or/c

the alternative chosen when the function is called rather
than when the contract is applied to the function. An ex-
ample is provided in Figure 22. The resulting possibilities
are similar to static overloading, where one function can
take additional parameters for example (e.g. as supported
for Java methods). On the other hand, it excludes the over-
loading of generic operations with fixed arity such as equal-
ity, comparison, arithmetic operators, and so on.

(define/contract overcase

(case→ (→ string? string ?)

(→ number? number? number ?)

)

(lambda (x [y 0]) (if (number? x)

(+ x y)

x)))

(overcase 1 2)

(overcase "hello ")

Figure 22. Overloading with the case→ combinator

In conclusion, Racket, a programming language with a
large user base, avoids the difficulties of general unions and
intersections (Section 4). They make the pragmatic choice
of a simple semantics with limited support for higher-order
contracts in intersections and unions.

6 (More) Related Work
6.1 Higher-Order Contracts
Enforcing pre- and post-conditions at runtime is a widely es-
tablished practice. In their foundational paper [14], Findler
and Felleisen introduce higher-order contracts, a principled
approach to run-time assertion checking that nicely sup-
ports functions. They introduce the notion of blame, which
is crucial to good error reporting. It became apparent later
that their contracts are closely related to the type casts in-
troduced by gradual typing, excluding blame: both [18] and
[22] see the value of contracts as a safe interface between
typed and untyped code. In [24], the authors precisely intro-
duce a system integrating gradual typing with contracts à la
Findler & Felleisen. Nickel adopts a similar type system, with
both statically typed terms, dynamically typed terms, and
first-class contracts. Higher-order contracts are the basis of
the work of Keil and Thiemann [17] and Williams et al. [25]
that this paper explored extensively.

6.2 Unions and Intersections in Gradual Typing
Castagna and Lanvin [10] introduce a gradual type system
based on set-theoretic types [15]. Set-theoretic types fea-
ture unions, intersections, negation types together with a
notion of subtyping. This work adheres to the static first
school (see [16]) of gradual typing: the reason for gradual
types is to allow for a less precise type information. It fol-
lows that their goals and constraints are somehow differ-
ent, resulting in the absence of first-class contracts. As for
any gradual type system, they do have to implement casts —
that are very close to contracts — for unions and intersec-
tions, but these casts are neither visible nor available to the
programmer. Obviously, no contracts mean no user-defined
contracts as well.

Castagna and Lanvin use abstract interpretation to derive
the semantics of unions and intersections. In their words:
“the resulting definitions are quite technical and barely in-
tuitive but they have the properties we seek for […]”. This
makes any comparison with the coinductive semantics of
Keil andThiemann rather difficult. Castagna et al. [11] build
on Castagna and Lanvin to add polymorphism in the picture.
However, it is at the price of restricting the union and inter-
section part: it is not possible to assign intersection types to
a function anymore.

6.3 Context Sensitive Contracts
The work by Dimoulas et al. [12, 13] presents a complete
study on systems that may execute (and potentially invali-
date) contracts inside other contracts, in particular through
the study of dependent function contracts. Their ideas have
the potential to help solve the problems outlined on Sections
4.2 and 5.2, however, it isn’t clear how to leverage their tech-
niques for intersections.

7 Conclusion
Despite the fact that union and intersection of dynamic prop-
erties may at first appear like an easy task, as soon as they
are combined with higher-order contracts for increased ac-
curacy of error messages, they really aren’t.

The problem of union and intersection contracts is that
they are not orthogonal to apparently independent features
of programming languages. The mere presence of intersec-
tion and union contract induces computational effects, and
can make it quite difficult to perform simple program opti-
mizations such as inlining.

Designing a language with union and intersection con-
tracts necessarily means making difficult choices: some fea-
tures of union and intersection contracts and of the rest of
the language must be abandoned. Various trade-offs can be
made, but it is worth mentioning that implementing a sys-
tem with union and intersection contracts appears to be
pretty complex a task when unions and intersections are
fairly complete.

Union and Intersection Contracts Are Hard, Actually DLS ’21, October 19, 2021, Chicago, IL, USA

It’s hard not to have sympathy for the minimalist end of
this spectrum, where, like Racket, a language only has a
very simple notion of unions and intersections. Many ap-
plications of unions and intersections are not possible in
such a context, but the presence of union and intersection
contracts doesn’t interact with the rest of the language. It’s
probably more manageable, and it’s the approach that we
are currently considering for Nickel.

To conclude, let us make clear that we do not think union
and intersection contracts are fundamentally broken, that
they can not be implemented correctly, or that they do not
bear any value (quite the contrary). They may still make
sense to have in a language, and some apparent difficulties
in the implementation could be lifted some day. But as often,
there are gaps between the theoretical foundation, a proof-
of-concept, a prototype, and the integration in an actual lan-
guage. We hope that our attempt may serve as a cautionary
tale: for union and intersection contracts, these gaps may be
larger than they appear.

References
[1] 2016. Optional types and the None type. https://web.archive.org/

web/20210910024940/https://mypy.readthedocs.io/en/latest/kinds_
of_types.html#optional-types-and-the-none-type

[2] 2019. The CUE Configuration Language. https://web.archive.org/web/
20210910025022/https://cuelang.org/

[3] 2020. The Nickel repository on GitHub.
https://archive.softwareheritage.org/swh:1:dir:
66ab3b7cda21c78149b1b51eb1c7827d3e35e77b;origin=
https://github.com/tweag/nickel;visit=swh:1:snp:
9147140b16412b3c288b3d235bf28c481ae46b6d;anchor=swh:1:rev:
5cb1ba649eb145fc0fee82eece8c62a6b67b597e

[4] 2021?. Contracts - Racket Documentation. https://web.archive.
org/web/20210814023650/https://docs.racket-lang.org/reference/
contracts.html

[5] 2021?. Design by Contract and Assertions - Eiffel. https:
//web.archive.org/web/20210116003625/https://www.eiffel.org/
doc/solutions/Design_by_Contract_and_Assertions

[6] 2021?. The Dhall configuration language. https://web.archive.org/
web/20210910025152/https://dhall-lang.org/

[7] 2021?. Jsonnet - The Data Templating Language. https://web.archive.
org/web/20210910025206/https://jsonnet.org/

[8] 2021. Repology package tracker. https://web.archive.org/web/
20210910024725/https://repology.org/repositories/statistics/total

[9] 2021. Union Types in TypeScript, TypeScript handbook. https:
//web.archive.org/web/20210910024843/https://www.typescriptlang.
org/docs/handbook/2/everyday-types.html#union-types

[10] Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with
Union and Intersection Types. Proc. ACM Program. Lang. 1, ICFP, Ar-
ticle 41 (Aug. 2017), 28 pages. https://doi.org/10.1145/3110285

[11] Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and
Jeremy G. Siek. 2019. Gradual Typing: A New Perspective. Proc.
ACM Program. Lang. 3, POPL, Article 16 (Jan. 2019), 32 pages. https:
//doi.org/10.1145/3290329

[12] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and
Matthias Felleisen. 2011. Correct Blame for Contracts: NoMore Scape-
goating. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas,
USA) (POPL ’11). Association for Computing Machinery, New York,
NY, USA, 215–226. https://doi.org/10.1145/1926385.1926410

[13] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen.
2012. Complete Monitors for Behavioral Contracts. In Programming
Languages and Systems, Helmut Seidl (Ed.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 214–233.

[14] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for
Higher-Order Functions. SIGPLAN Not. 37, 9 (Sept. 2002), 48–59.
https://doi.org/10.1145/583852.581484

[15] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Se-
mantic subtyping: Dealing set-theoretically with function, union, in-
tersection, and negation types. J. ACM 55 (09 2008). https://doi.org/
10.1145/1391289.1391293

[16] Michael Greenberg. 2019. The Dynamic Practice and Static Theory
of Gradual Typing. In 3rd Summit on Advances in Programming Lan-
guages (SNAPL 2019) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 136), Benjamin S. Lerner, Rastislav Bodík, and Shriram
Krishnamurthi (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 6:1–6:20. https://doi.org/10.4230/LIPIcs.
SNAPL.2019.6

[17] Matthias Keil and Peter Thiemann. 2015. Blame Assignment for
Higher-Order Contracts with Intersection and Union. In Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming (Vancouver, BC, Canada) (ICFP 2015). Association for Com-
puting Machinery, New York, NY, USA, 375–386. https://doi.org/10.
1145/2784731.2784737

[18] Jacob Matthews and Robert Bruce Findler. 2007. Operational Se-
mantics for Multi-Language Programs. In Proceedings of the 34th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Nice, France) (POPL ’07). Association for Computing Ma-
chinery, New York, NY, USA, 3–10. https://doi.org/10.1145/1190216.
1190220

[19] B Meyer. 1987. Eiffel: Programming for Reusability and Extendibility.
SIGPLAN Not. 22, 2 (Feb. 1987), 85–94. https://doi.org/10.1145/24686.
24694

[20] Francisco Ortin and Miguel García. 2011. Union and intersection
types to support both dynamic and static typing. Inform. Process. Lett.
111, 6 (2011), 278–286. https://doi.org/10.1016/j.ipl.2010.12.006

[21] Simon Peyton Jones, Will Partain, and André Santos. 1996. Let-
Floating: Moving Bindings to Give Faster Programs. In Proceedings
of the First ACM SIGPLAN International Conference on Functional Pro-
gramming (Philadelphia, Pennsylvania, USA) (ICFP ’96). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.
org/10.1145/232627.232630

[22] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage
Migration: From Scripts to Programs. In Companion to the 21st ACM
SIGPLAN Symposium on Object-Oriented Programming Systems, Lan-
guages, and Applications (Portland, Oregon, USA) (OOPSLA ’06). As-
sociation for Computing Machinery, New York, NY, USA, 964–974.
https://doi.org/10.1145/1176617.1176755

[23] Matías Toro and Éric Tanter. 2017. A Gradual Interpretation of Union
Types. 382–404. https://doi.org/10.1007/978-3-319-66706-5_19

[24] Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs
Can’t Be Blamed. In Proceedings of the 18th European Symposium on
Programming Languages and Systems: Held as Part of the Joint Euro-
pean Conferences onTheory and Practice of Software, ETAPS 2009 (York,
UK) (ESOP ’09). Springer-Verlag, Berlin, Heidelberg, 1–16. https:
//doi.org/10.1007/978-3-642-00590-9_1

[25] Jack Williams, J. Garrett Morris, and Philip Wadler. 2018. The Root
Cause of Blame: Contracts for Intersection and Union Types. Proc.
ACM Program. Lang. 2, OOPSLA, Article 134 (Oct. 2018), 29 pages.
https://doi.org/10.1145/3276504

https://web.archive.org/web/20210910024940/https://mypy.readthedocs.io/en/latest/kinds_of_types.html#optional-types-and-the-none-type
https://web.archive.org/web/20210910024940/https://mypy.readthedocs.io/en/latest/kinds_of_types.html#optional-types-and-the-none-type
https://web.archive.org/web/20210910024940/https://mypy.readthedocs.io/en/latest/kinds_of_types.html#optional-types-and-the-none-type
https://web.archive.org/web/20210910025022/https://cuelang.org/
https://web.archive.org/web/20210910025022/https://cuelang.org/
https://archive.softwareheritage.org/swh:1:dir:66ab3b7cda21c78149b1b51eb1c7827d3e35e77b;origin=https://github.com/tweag/nickel;visit=swh:1:snp:9147140b16412b3c288b3d235bf28c481ae46b6d;anchor=swh:1:rev:5cb1ba649eb145fc0fee82eece8c62a6b67b597e
https://archive.softwareheritage.org/swh:1:dir:66ab3b7cda21c78149b1b51eb1c7827d3e35e77b;origin=https://github.com/tweag/nickel;visit=swh:1:snp:9147140b16412b3c288b3d235bf28c481ae46b6d;anchor=swh:1:rev:5cb1ba649eb145fc0fee82eece8c62a6b67b597e
https://archive.softwareheritage.org/swh:1:dir:66ab3b7cda21c78149b1b51eb1c7827d3e35e77b;origin=https://github.com/tweag/nickel;visit=swh:1:snp:9147140b16412b3c288b3d235bf28c481ae46b6d;anchor=swh:1:rev:5cb1ba649eb145fc0fee82eece8c62a6b67b597e
https://archive.softwareheritage.org/swh:1:dir:66ab3b7cda21c78149b1b51eb1c7827d3e35e77b;origin=https://github.com/tweag/nickel;visit=swh:1:snp:9147140b16412b3c288b3d235bf28c481ae46b6d;anchor=swh:1:rev:5cb1ba649eb145fc0fee82eece8c62a6b67b597e
https://archive.softwareheritage.org/swh:1:dir:66ab3b7cda21c78149b1b51eb1c7827d3e35e77b;origin=https://github.com/tweag/nickel;visit=swh:1:snp:9147140b16412b3c288b3d235bf28c481ae46b6d;anchor=swh:1:rev:5cb1ba649eb145fc0fee82eece8c62a6b67b597e
https://web.archive.org/web/20210814023650/https://docs.racket-lang.org/reference/contracts.html
https://web.archive.org/web/20210814023650/https://docs.racket-lang.org/reference/contracts.html
https://web.archive.org/web/20210814023650/https://docs.racket-lang.org/reference/contracts.html
https://web.archive.org/web/20210116003625/https://www.eiffel.org/doc/solutions/Design_by_Contract_and_Assertions
https://web.archive.org/web/20210116003625/https://www.eiffel.org/doc/solutions/Design_by_Contract_and_Assertions
https://web.archive.org/web/20210116003625/https://www.eiffel.org/doc/solutions/Design_by_Contract_and_Assertions
https://web.archive.org/web/20210910025152/https://dhall-lang.org/
https://web.archive.org/web/20210910025152/https://dhall-lang.org/
https://web.archive.org/web/20210910025206/https://jsonnet.org/
https://web.archive.org/web/20210910025206/https://jsonnet.org/
https://web.archive.org/web/20210910024725/https://repology.org/repositories/statistics/total
https://web.archive.org/web/20210910024725/https://repology.org/repositories/statistics/total
https://web.archive.org/web/20210910024843/https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#union-types
https://web.archive.org/web/20210910024843/https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#union-types
https://web.archive.org/web/20210910024843/https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#union-types
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1145/583852.581484
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1145/1391289.1391293
https://doi.org/10.4230/LIPIcs.SNAPL.2019.6
https://doi.org/10.4230/LIPIcs.SNAPL.2019.6
https://doi.org/10.1145/2784731.2784737
https://doi.org/10.1145/2784731.2784737
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/24686.24694
https://doi.org/10.1145/24686.24694
https://doi.org/10.1016/j.ipl.2010.12.006
https://doi.org/10.1145/232627.232630
https://doi.org/10.1145/232627.232630
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1007/978-3-319-66706-5_19
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1145/3276504

	Abstract
	1 Introduction
	1.1 Configuration Languages
	1.2 Nickel
	1.3 Contracts
	1.4 Contributions

	2 A Typology of Language Features
	2.1 User-Defined Contracts
	2.2 Referential Transparency

	3 Union & Intersection
	3.1 Unions
	3.2 Intersections

	4 Incompatibilities
	4.1 Union Contracts as a Side-Effect
	4.2 Intersection with User-Defined Contracts

	5 Pragmatic Trade-Offs
	5.1 A Coinductive Semantics
	5.2 A First Realization
	5.3 Monitoring Properties
	5.4 Racket

	6 (More) Related Work
	6.1 Higher-Order Contracts
	6.2 Unions and Intersections in Gradual Typing
	6.3 Context Sensitive Contracts

	7 Conclusion
	References

